EXPLORE

OUR LATEST PUBLICATIONS IN THE FIELD OF APPLIED MATHEMATICS...

AN ANALYSIS OF THE FINITE ELE-MENT METHOD

by Gilbert Strang, M.I.T.; George Fix, Univ. of Maryland

Covers in detail the finite method, an extremely successful technique developed by civil and aerospace engineers for the numerical solution of structural problems. Provides a sound basis for further developments of the method, including applications to different fields of engineering and physics.

1973 approx. 320 pp. cloth (013-0329-46-0) \$16.00

NUMERICAL ANALYSIS OF SYM-METRIC MATRICES

by H. R. Schwarz, H. Rutishauser and C. Stiefel

Presents a large number of problems of mathematical physics ranging from grid relaxation to data-fitting. Intended for sophomores and juniors in college who have had some matrix theory. Develops powerful numerical techniques and accentuates those which lend themselves to efficient use of a digital computer.

1973 320 pp., cloth (013-626556-1) \$14.50

ITERATIVE METHODS FOR NON-LINEAR OPTIMIZATION PROBLEMS

by S. L. Jacoby, J. S. Kowalik, and J. T. Pizzo, all of Commercial Airplane Div.; Boeing Co.

Unified description in algorithmic fashion of the currently available techniques in the areas of mathematical programming and unconstrained optimization.

1972 274 pp., cloth (013-508119-X) \$14.00

SPLINE ANALYSIS

by Martin H. Schultz, Yale University

An introduction to the theory, applications and computational aspects of finite-elements—e.g., piecewise polynomial or spline methods in numerical analysis. Applications include single and multi-dimensional interpolation, least squares approximation, linear integral equations, linear and semi-linear elliptic boundary value problems, eigenvalue problems linear and semi-linear parabolic initial-boundary value problems, and optimal control problems.

1973 169pp., cloth (013-835405-7) \$10.50

ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES

by Richard P. Brent, IBM Thomas

J. Watson Research Center Gives reliable FORTRAN and ALGOL computer programs. Considers methods that are easy to use on a computer — they do not require derivatives, only function values need to be computed. Discusses, in detail, a method for finding the global minimum (or maximum) of a function of one or more variables. Extensive Bibliography.

1973 195 pp., cloth (013-022335-2) \$12.00

For further information write: Robert Jordan/Dept. J-683, College Division/Prentice-Hall/Englewood Cliffs, N. J. 07632

PRENTICE-HALL

REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS	66
Table Errata	68
Corrigenda Fettis, Newman.	68

Mathematics of Computation

TABLE OF CONTENTS JULY 1973

Integer Vectors with Interprimed Components HAROLD N. SHAPIRO	455
Implementation and Analysis of the Todd-Coxeter Algorithm John J. Cannon, Lucien A. Dimino, George Havas & Jane M. Watson	463
More About Four Biquadrates Equal One Biquadrate KERMIT ROSE & SIMCHA BRUDNO	491
Some Probability Density Functions and Their Characteristic Functions FRANK McNolty	495
Higher Order Accuracy Finite Difference Algorithms for Quasi-Linear, Conservation Law Hyperbolic Systems S. Abarbanel & D. Gottlieb	505
Rate of Convergence Estimates for Nonselfadjoint Eigenvalue Approximations J. H. Bramble & J. E. Osborn	525
Solving Linear Boundary Value Problems by Approximating the Coefficients Steven A. Pruess	551
A New Error Analysis for a Cubic Spline Approximate Solution of a Class of Volterra Integro-Differential Equations JOSEPH A. GUZEK & GENE A. KEMPER	563
A First Order Method for Differential Equations of Neutral Type R. N. CASTLETON & L. J. GRIMM	571
Numerical Methods for Computing Angles Between Linear Subspaces ÅKE BJÖRCK & GENE H. GOLUB	579
Efficient Computer Manipulation of Tensor Products with Applications to Multidimensional Approximation V. Pereyra & G. Scherer	595
The Calculation of Best Linear One-Sided L_p Approximations G. A. Watson	607
Multi-Dimensional Extensions of the Chebyshev Polynomials RICHARD O. HAYS	621
Computation of Hermite Polynomials Laurance C. Eisenhart & George E. Trapp, Jr.	625
Chebyshev Polynomials Corresponding to a Semi-Infinite Interval and an Exponential Weight Factor David W. Kammler	633
Error Analysis for Fourier Series Evaluation A. C. R. Newbery	639
Almost-Interpolatory Chebyshev Quadrature K. Salkauskas	645
Cubature Error Bounds for Analytic Functions F. G. Lether	655